
Application of Modern Fortran to Spacecraft Trajectory Design
and Optimization

Jacob Williams∗

ERC Inc., Houston, TX, 77058

Robert D. Falck†

NASA Glenn Research Center, Cleveland, OH, 44135

Izaak B. Beekman‡

ParaTools Inc., Baltimore, MD, 21228

In this paper, applications of the modern Fortran programming language to the field of
spacecraft trajectory optimization and design are examined. Modern Fortran (the latest stan-
dard is Fortran 2008, and the newer Fortran 2018 standard is due to be published next year) is a
significant enhancement to the classical Fortran 77 language. Modern object-oriented Fortran
has many advantages for scientific programming, although many legacy Fortran aerospace
codes have not been upgraded to use the newer standards (or have been rewritten in other
languages perceived to be more modern). NASA’s Copernicus spacecraft trajectory optimiza-
tion program, originally a combination of Fortran 77 and Fortran 95, has attempted to keep
up with modern standards and makes significant use of the new language features. Various
algorithms and methods are presented from trajectory tools such as Copernicus, as well as
modern Fortran open source libraries and other projects.

I. Introduction
The original version of Fortran, developed by IBM in the late 1950s, was the first high-level programming language.

It has continued to be updated regularly up to the present day. A brief overview of the Fortran language evolution
is summarized in Table 1. For more details, see References [1–3]. The “classical” version of the language was first
standardized in Fortran 66 and updated in Fortran 77. Significant expansions of the language were implemented in
Fortran 90 and Fortran 2003. Fortran 2003 [4] was a very significant update that made Fortran an object-oriented
language (the difference between Fortran 2003 and Fortran 77 is akin to the difference between C++ and C). The latest
standard is Fortran 2008 [5], the upcoming Fortran 2018 standard (formerly known as Fortran 2015) [6] is due to be
published next year, and planning has begun for the next standard (Fortran 202x). Fortran has maintained a high degree
of backward compatibility, with each revision being mostly a superset of the previous revision (so older code can still be
compiled with a modern compiler). The term “modern Fortran”, as used in this paper, is intended to mean Fortran
2003 (and later), and implies free-form source, thread-safety, object-oriented (where appropriate), clearly written and
well-documented code.

Fortran is a high-level general purpose programming language very well suited for scientific, technical and high
performance computing (HPC) [7–10]. The syntax is fairly intuitive and includes built-in vector and matrix handling
features, with less necessity than C-based languages to use potentially unsafe pointers, which lends itself to vectorization
and parallelization. As an example, a basic Fortran function for computing third-body gravitational acceleration [11] is
shown in Fig. 1. This function highlights the straightforward “close to the math” syntax of the language, including
operations involving vectors, without the need for external libraries. The language also includes advanced high-level
object-oriented features which are critical for the development of very complex codes. A standardized interoperability
with the C programming language also allows Fortran to call C and for C to call Fortran, opening up the language to
other libraries not written in Fortran (note that interoperability with C also means interoperability with any language
that is also interoperable with C, such as C++ and Python).

∗Senior Astrodynamics Engineer, JETS Engineering Department, AIAA Senior Member
†Aerospace Engineer, Mission Analysis and Architecture Branch, AIAA Member
‡HPC Scientist, AIAA Member

https://ntrs.nasa.gov/search.jsp?R=20180000413 2018-07-24T21:56:19+00:00Z

1 pure function third_body_gravity(r,rb,mu) result(acc)
2
3 !! Third -body (pointmass) gravitational acceleration.
4
5 use iso_fortran_env , only: wp => real64 ! use "double precision" reals
6
7 implicit none
8
9 real(wp),dimension (3),intent(in) :: r !! satellite position vector [km]

10 real(wp),dimension (3),intent(in) :: rb !! third -body position vector [km]
11 real(wp),intent(in) :: mu !! third -body gravitational parameter [km^3/s^2]
12 real(wp),dimension (3) :: acc !! gravity acceleration vector [km/s^2]
13
14 real(wp),dimension (3) :: r_sc_b !! vector from third -body to spacecraft [km]
15 real(wp) :: rb_mag !! distance between origin and third -body [km]
16 real(wp) :: r_sc_b_mag !! distance between spacecraft and third -body [km]
17
18 r_sc_b = rb - r
19 r_sc_b_mag = norm2(r_sc_b)
20 rb_mag = norm2(rb)
21 acc = (mu/r_sc_b_mag **3)*r_sc_b - (mu/rb_mag **3)*rb
22
23 end function third_body_gravity

Fig. 1 Example Fortran Function to Compute Third-Body Gravity (from the Fortran Astrodynamics Toolkit).
This function highlights the “close to the math” syntax of Fortran, without the need to use external libraries. It
has vector inputs and returns a vector output. The function is “pure” meaning that it has no side effects, which
can allow the compiler greater possibilities for code optimization.

While there is a great deal of very high-quality freely available or open source Fortran 77 legacy code in existence
(e.g., MINPACK, SLATEC, and MATH77 at Netlib∗), it is not in a form that is very appealing to modern programmers.
For well documented third-party libraries that do not need to be changed, this obsolescence is not really an issue, but it
can present severe impediments if the legacy code needs to be modified. Sometimes, refactoring is quite straightforward
and enables many improvements to the original code. Recent activities including the development of new open source
modern Fortran libraries hosted on sites such as GitHub, are a cause for optimism for the future of the language. In the
aerospace field, for example, the Fortran Astrodynamics Toolkit (a work in progress) is intended to be a modern open
source library for the foundational algorithms of orbital mechanics†.

The Copernicus spacecraft trajectory optimization program [12], developed at the Johnson Space Center (JSC)
and distributed under a government use license‡, is an example of an actively-developed modern Fortran application.
Copernicus is capable of solving a wide range of trajectory design and optimization problems, including trajectories
centered about any planet or moon in the solar system, trajectories influenced by two or more celestial bodies such as
halo orbits or distant retrograde orbits, Earth-Moon and interplanetary transfers, asteroid and comet missions, and more.
One of the core elements of the program is the “segment”, which is the fundamental building block of mission design in
Copernicus. Copernicus includes a full-featured Graphical User Interface (GUI) with interactive 3D graphics. The
system is very flexible and has been used extensively at JSC (and other NASA centers) for a wide range of projects.

At NASA in general, many spacecraft trajectory optimization problems are solved using Fortran tools such as
SORT [13], OTIS [14], MALTO [15], Mystic [16], and Copernicus. Other historic Fortran 77 tools have been
replaced or rewritten in other programming languages. Examples include POST [17] (converted to C in the 1990s)
and DPTRAJ/ODP (replaced with the C++/Python MONTE [18]). The JPL tool CATO [19] uses an “object-based”
approach with Fortran 95, which is similar in some ways to how Copernicus was originally coded in the early-2000s.
Unlike many of the legacy tools, the Copernicus code base (originally a combination of Fortran 77 and Fortran 95) has
been kept up to date using modern Fortran features, including the incorporation of object-oriented design patterns [20].
This paper describes some of these modern Fortran concepts and their usefulness in trajectory design tools such as
Copernicus.

∗Netlib Repository. http://www.netlib.org
†A Modern Fortran Library for Astrodynamics. https://github.com/jacobwilliams/Fortran-Astrodynamics-Toolkit
‡Copernicus Trajectory Design and Optimization System (Version 4.x). https://software.nasa.gov/software/MSC-25863-1

2

http://www.netlib.org
https://github.com/jacobwilliams/Fortran-Astrodynamics-Toolkit
https://software.nasa.gov/software/MSC-25863-1

Table 1 Major Fortran Language Milestones.

Version Summary

Fortran I – IV First high-level programming language, subscripted arrays, intrinsic functions, GOTO, IF,
and DO statements, subroutines and functions. Various vendor-specific versions.

Fortran 66 First standardized programming language.

Fortran 77 Structured programming, IF-ELSE-ENDIF, CHARACTER variables, PARAMETER statement,
generic names for intrinsic functions.

Fortran 90 Array language, derived data types, dynamic memory, pointers, modules, operator
overloading, generic interfaces, numeric inquiry functions, recursion, free-form source.

Fortran 95 PURE and ELEMENTAL procedures, garbage collection of ALLOCATABLE arrays.

Fortran 2003 Object oriented programming, type extension and inheritance, polymorphism, type-bound
procedures, procedure pointers, C interoperability, floating-point exceptions.

Fortran 2008 Coarray parallelism, submodules, DO CONCURRENT and BLOCK constructs, recursive
allocatable components of derived types.

Fortran 2018 Further C/Fortran interoperability, additional parallel features (e.g., coarray teams).

II. Survey of Algorithms
In the following sections, various algorithms and codes are discussed, along with examples of how they are

implemented and used in modern Fortran. The focus is on high-level, object-oriented algorithms that are used in
trajectory design tools such as Copernicus. Many of the codes discussed here are open source, and the links are given in
footnotes for reference.

A. JSON
While the Fortran language does include facilities for reading and writing text and binary files, the only high-level text

file format built into the language is known as a “namelist”. Many legacy codes use this format for input configuration
files. Namelists are simple to read and write from Fortran code but have very severe limitations (such as limited
error checking ability and strict variable type requirements). For modern applications, it is preferable to use a more
standardized and flexible format with a high-level interface. JavaScript Object Notation (JSON) is a lightweight
human-readable data exchange format that has a modern Fortran open source interface known as JSON-Fortran§. JSON
can be used for configuration input files and data output files, as well as for communication between tools. Recent
versions of Copernicus use JSON-Fortran for interfacing with user-defined plugins using a JSON-based application
programming interface (API). An example of reading a JSON input file is shown in Fig. 2 using the high-level
json_file class. Methods exits in the class for retrieving data from a file, inquiring about the contents of the file or the
types and sizes of individual variables, and error checking. In the example shown in Fig. 2b, the get() method, which
is overloaded for integer, real, character, and logical scalar and vector variables, is used to retrieve values from the file.
Other methods are also included for creating and modifying a JSON file.

In a future release, the main Copernicus input file format will transition from namelists to JSON. The JSON
format allows for portable storage of arbitrary data, and the flexibility of the JSON-Fortran API will eliminate various
limitations in the program that exist due to the rigidity of the namelist format. The ubiquity of JSON also provides
opportunities for scripting Copernicus (and interfacing with plugins) in a variety of programming languages (such as
Python). The JSON-Fortran API can also be used for general-purpose collection of data internally that can then be
transformed into a variety of other formats. Copernicus employs this strategy to generate data output files in a variety of
different formats (e.g., CSV, HDF5, and SPK).

A variety of other file formats is also available for use in modern Fortran codes via other third-party libraries,
including INI¶, CSV‖, and HDF5∗∗.

§JSON-Fortran: A Fortran 2008 JSON API. https://github.com/jacobwilliams/json-fortran
¶Fortran INI ParseR and Generator. https://github.com/szaghi/FiNeR
‖Read and Write CSV Files Using Modern Fortran. https://github.com/jacobwilliams/fortran-csv-module

∗∗Object Oriented Fortran HDF5 Module. https://github.com/rjgtorres/oo_hdf

3

https://github.com/jacobwilliams/json-fortran
https://github.com/szaghi/FiNeR
https://github.com/jacobwilliams/fortran-csv-module
https://github.com/rjgtorres/oo_hdf

1 {
2 "rp": 4500,
3 "et": -6128265558.8176 ,
4 "n_revs": 200,
5 "generate_plots": true ,
6 "ephemeris_file": "JPLEPH .421"
7 }

(a) Example JSON Config File. This example
contains a hypothetical set of input parameters.

1 subroutine read_config_file(filename)
2 use json_module
3 character(len =*),intent(in) :: filename
4 type(json_file) :: json
5 call json%load_file(filename)
6 call json%get('rp', rp)
7 call json%get('et', year)
8 call json%get('n_revs ', n_revs)
9 call json%get('generate_plots ', generate_plots)
10 call json%get('ephemeris_file ', ephemeris_file)
11 if (json%failed ()) error stop 'error loading file'
12 call json%destroy ()
13 end subroutine read_config_file

(b) The Code to Read the Example JSON File.

Fig. 2 Reading a config file using the JSON library is fairly straightforward. Additional error checking can be
done to check if each variable is found in the file and to verify the variable type (two features that are not easily
done using Fortran namelists).

B. Dynamic Structures & Linked Lists
One of the limitations of Fortran 77 was the lack of any facility for creating and manipulating dynamic data structures.

This was a significant impediment to the creation of very complicated interactive applications. Modern Fortran includes
two components to facilitate dynamic data: allocatable and pointer variable attributes [2]. Both have their uses.
Allocatable arrays are generally more efficient since they are guaranteed to be contiguous in memory, whereas pointers
are allowed to point to non-contiguous array slices. Improper use of pointers can also lead to memory leaks, whereas
allocatables will always be automatically “garbage collected” by the compiler when they go out of scope. A derived
type can include an allocatable or pointer instance of the same type, thus allowing for the creation of many kinds of
dynamic and recursive structures.

There are many example use cases for dynamic data structures in complex trajectory design software such as
Copernicus. A primary example is the construction of the mission segments when reading the input file. A very simple
example JSON snippet is shown in Fig. 3a, which could represent the initial conditions of a Copernicus segment (in this
case, the initial time t0 of the “coast” segment is inheriting the final time t f from segment 1, whereas other variables ∆t
and x0 are specified as real values). Data of this sort can be represented as a dictionary type structure containing integers,
reals, booleans, strings, and other dictionary instances, as shown in Fig. 3b. In an interactive tool like Copernicus, the
data layout of the mission can change during run time (for example, when a new segment is inserted, or if the selected
gravity model is changed in a segment). Lists of different types of complex objects have many other applications in
trajectory software (including frames, celestial bodies, and gravity models).

One of the basic building blocks of dynamic data structures is a linked list [21]. In earlier versions of Fortran,
various workarounds were necessary to enable the creation of code to handle “generic” linked lists (i.e., a structure
that can contain data of any type) [22]. The “unlimited polymorphic” variables introduced in Fortran 2003 make the
creation of such structures much more straightforward (as shown in Fig. 4). Fig. 4a shows an example of a type that can
be used to construct a polymorphic dictionary type structure using linked lists††. Here, the node content (value) is an
unlimited polymorphic (class(*)) pointer variable, which can be allocated at run time to any variable type. The key is
also polymorphic (e.g, to allow for integer, string, or other types of keys). Using these concepts, the data structure
shown in Fig. 3 can be built as a polymorphic linked list using the code shown in Fig. 4d. There are a variety of flavors
of this technique that can be used to build and manipulate various dynamics structures such as lists, stacks, and queues.
It is important to note that a linked list constructed using pointer allocations in this manner must be properly destroyed
in order to avoid memory leaks (the structure must be traversed and the pointers deallocated). The compiler will not do
this automatically. Typically, a linked list could be encapsulated into a list derived type that includes all the public
methods for creating and manipulating the data, which may not require the caller to use pointer variables (this is done
in the JSON-Fortran library). The list type could also include a finalizer (a destructor-like type bound procedure
called automatically when the variable goes out of scope) to clean up the memory. Dynamic structures using recursive
allocatable variables are also possible (starting in Fortran 2008), which would be more memory safe, but perhaps less
flexible depending on the use case [2].

††Modern Fortran Linked List. https://github.com/jacobwilliams/flist

4

https://github.com/jacobwilliams/flist

1 {
2 "name": "coast",
3 "t0": {
4 "inherit": {
5 "segment": 1,
6 "node": "TF"
7 }
8 },
9 "dt": 1.0,

10 "x0": 1000.0
11 }

(a) JSON Representation of Input Data. This is
the type of data that could be read from a config-
uration input file.

'name' → 'coast'

'dt' → 1.0

'x0' → 1000.0

't0' → 'inherit' →
'segment' → 1

'node' → 'TF'

(b) Linked List Representation of the Same Data.

Fig. 3 Example of Dictionary Type Structure. Using pointers, a variety of data structures can be created in
Fortran. The example here is similar to the type of information read from a Copernicus input file.

1 type :: node
2 private
3 class (*),allocatable :: key
4 class (*),pointer :: value => null()
5 type(node),pointer :: next => null()
6 type(node),pointer :: previous => null()
7 type(node),pointer :: parent => null()
8 type(node),pointer :: head => null()
9 type(node),pointer :: tail => null()

10 end type node

(a) A Node in a Linked List. This type can be used
to build tree structures. Both the key and value are
unlimited polymorphic variables.

1 subroutine add_by_value(me,key ,value)
2
3 type(node),pointer :: me
4 character(len =*),intent(in) :: key
5 class (*),intent(in) :: value
6
7 class (*),pointer :: p_value
8 allocate(p_value , source=value) !make a copy
9 call add_by_pointer(me,key ,p_value)

10
11 end subroutine add_by_value

(b) Procedure for Adding a Node to a Linked List (by
Value). In this method, the value is cloned using an
allocate statement, which makes a copy to store in the
list.

1 subroutine add_by_pointer(me,key ,value)
2
3 type(node),pointer :: me
4 character(len =*),intent(in) :: key
5 class (*),pointer :: value
6
7 type(node),pointer :: p
8
9 if (associated(me%tail)) then !insert at end

10 allocate(me%tail%next)
11 p => me%tail%next
12 p%previous => me%tail
13 else !first item in the list
14 allocate(me%head)
15 p => me%head
16 end if
17 me%tail => p
18 p%parent => me
19 allocate(p%key , source=key) ! the key
20 p%value => value ! the value
21
22 end subroutine add_by_pointer

(c) Procedure for Adding a Node to a Linked List (by
Pointer). In this case, the pointer is directly added to
the list and no copy is made.

1 program example
2
3 use linked_list_module
4
5 implicit none
6
7 type(node),pointer :: list
8 type(node),pointer :: inherit
9 class (*),pointer :: p_inherit

10
11 allocate(list)
12 call add_by_value(list ,'name','coast ')
13 call add_by_value(list ,'dt' ,1.0_wp)
14 call add_by_value(list ,'x0' ,1000.0 _wp)
15
16 allocate(inherit)
17 call add_by_value(inherit ,'segment ' ,1)
18 call add_by_value(inherit ,'node','TF')
19 p_inherit => inherit
20 call add_by_pointer(list ,'t0',p_inherit)
21
22 end program example

(d) Constructing a Linked List. This is the data from
Fig. 3, constructed as a linked list of node pointers.

Fig. 4 Linked List Example. A data type that contains pointers to instances of the same type can be used to
construct a variety of different types of data structures using linked lists. The next and previous pointers can
be used to build doubly-linked lists, while the parent, head, and tail pointers can be used for trees. See the
JSON-Fortran library for a more comprehensive set of code for building these types of structures.

5

Mission Attribute

Segment Plugin

Internal

Parser

External

DLL Script

Fig. 5 Class Hierarchy of Copernicus Mission Attributes. Abstract types are italicized, which exist only to be
extended. A mission consists of segments and plugins (either parser, DLL, or script).

1 type ,abstract ,public :: mission_attribute
2 contains
3 procedure(prop_func),deferred :: propagate
4 end type mission_attribute
5
6 type ,extends(mission_attribute),public :: segment
7 contains
8 procedure :: propagate => propagate_segment
9 end type segment

10
11 type ,extends(mission_attribute),abstract ,public ::

plugin
12 end type plugin
13
14 type ,extends(plugin),abstract ,public ::

internal_plugin
15 end type internal_plugin
16

17 type ,extends(plugin),abstract ,public ::
external_plugin

18 end type external_plugin
19
20 type ,extends(internal_plugin),public :: parser_plugin
21 contains
22 procedure :: propagate => propagate_parser_plugin
23 end type parser_plugin
24
25 type ,extends(external_plugin),public :: script_plugin
26 contains
27 procedure :: propagate => propagate_script_plugin
28 end type script_plugin
29
30 type ,extends(external_plugin),public :: dll_plugin
31 contains
32 procedure :: propagate => propagate_dll_plugin
33 end type dll_plugin

Fig. 6 High-Level Mission Attribute Definitions. All concrete mission attribute types (which are all derived
from the root mission_attributes type) must define a propagate() method. For segments, this will integrate
the segment from t0 to t f . For plugins, this could be as simple as evaluating one user-defined equation. See also
Fig. 5.

C. Copernicus Mission Attributes
A spacecraft trajectory optimization problem in Copernicus is constructed using two types of mission attributes:

segments and plugins (see Fig. 5). Segments are the original built-in mission components, which can represent a thrusting
or coasting period, can include impulsive ∆v maneuvers, and can represent any number of different vehicles [12].
Plugins are a recent addition to Copernicus, and allow for user-defined algorithms to be included in the mission and
optimization problem [23]. Various types of plugins are available, as shown in Fig. 5. Copernicus also includes the
concept of groups, which are collections of segments and/or plugins that define a specific optimization problem (a
mission can include any number of groups). An outline of the basic code definitions for segments and plugins is shown in
Fig. 6. The mission attributes use various object-oriented concepts including polymorphism, inheritance, encapsulation,
and data hiding. An abstract mission_attribute type exists only to be extended (variables cannot be declared of an
abstract type). An abstract type may contain procedures that must be defined in the extended types (for example the
segments type). In the case of Copernicus mission attributes, each mission component defines a propagate() method
(among others). Simulating the entire mission involves calling the propagate() method of each mission attribute.

D. Topological Sorting
A Copernicus mission composed of many segments and plugins can contain complex interdependencies. The

diagram in Fig. 7 shows a representation of the dependencies among the numerous segments and plugins of the Orion
EM-1 [24] mission, which was designed in Copernicus. A complex mission can include hundreds or even thousands
of segments. To avoid forcing the user to define the segments in a specific order, Copernicus employs a topological
sorting algorithm to determine the order in which they must be propagated (for example, when computing the gradients).
Topological sorting is a recursive algorithm used to determine the order in which a series of interdependent tasks
must be completed [21]. A simple example of this algorithm is shown in Fig. 8, and an example use case is shown in
Fig. 9. In this example, elements of a mission are numbered [1, 2, . . .]. Their dependencies are known (for example,

6

S1 S2

S3P1

S4 S5

S6 S7 S8

S9
S10

S11 S12

S13 S14 S15

S16

S17

S18

S19 S20 S21

S22

S54 P3

S23

S55

S24

S25

P4

S26

S27
S28

S29

S30

S31 S32

S33

S34 S35

S36 S37

S38

S39

S40 S41

S42

S43
S44

S45

S46

S47

S48

S49

S50

S51

S52

S53

S56

S57

S58

S59

S60

S61

S62
S63

S64

S65

S66

S67

S68

S69

S70

S71 S72

S73

S74 S75

S76
S77 S78

S79 S80

S81

S82
S83

S84

P2

Fig. 7 Copernicus Mission Dependency Diagram. The dependencies of the attributes of a mission can be
represented as a Directed Acyclic Graph (DAG). Copernicus dependencies arise, for example, when a segment
inherits data from other segments. Before a segment (or plugin) can be propagated, all of its dependencies must
be met (i.e., the segments it depends on must already have been propagated).

element 3 depends on elements 1 and 5). The dag%toposort() method produces the order: [1, 2, 5, 3, 4], which is a
valid propagation order that ensures that no segment is propagated before its dependencies are met. Another use of
topological sorting in Copernicus is to ensure that a set of interdependent parser equations is evaluated in the correct
order [23].

E. Calculation Expression Parser
General trajectory optimization tools such as OTIS and Copernicus allow users a great degree of freedom in defining

their optimization problems. Much of this freedom comes from allowing the user to form their own objective functions
and constraints as mathematical expressions based on an internal data dictionary of common variables and some
available set of mathematical functions. Allowing the user to define these routines at run-time in infix notation extends
the capability of such programs without the need to recompile the source code.

In this section, the implementation of a calculation expression parser is discussed. This parser converts mathematical
expressions from infix notation into binary syntax trees. This parsing of mathematical expressions is a recursive
operation, since expressions may be embedded in other mathematical expressions by wrapping them in parentheses.
The parser uses several capabilities of modern Fortran to construct binary trees, which may then be efficiently evaluated.

1. Binary Syntax Trees
Binary syntax trees provide a data structure that can be used to represent complex mathematical expressions. As the

name implies, a binary tree can have up to two children. Each node can represent a mathematical operator, function,
literal numeric value, or variable value. The children represent arguments of operators or functions. Despite being
limited to only two arguments, this framework accommodates most functions and operators commonly used. The
algorithm presented here can be extended to a logical if function with and and or operators by allowing for a third
condition child of each node, and by treating specific floating point values as booleans (1.0 = True, 0.0 = False, for
instance). Fig. 10 depicts a few sample binary syntax trees. Note that the parsing algorithm must observe both the
precedence rules and associativity of operators. All nodes in the tree are binary. In the case of unary functions, such as
sqrt, the “right” child is an unassociated pointer. With the polymorphism supported by modern Fortran, the four types
of node can each be a subclass derived from the base class, cpNode (shown in Fig. 11).

2. The Parsing Algorithm
The parsing algorithm is the most complex portion of the overall calculation expression capability. The algorithm

must account for nested calculations embedded in parentheses, operator precedence and associativity, as well as some
“corner cases” such as unary negation and redundant parentheses. In general, the calculation parsing algorithm involves
the following steps:

1) If the string begins with “(” and ends with “)”, strip them and recursively call the parsing algorithm on the
remaining string.

2) Call a subroutine split_equation() that splits the string by the operator of lowest precedence.

7

1 module toposort_module
2 implicit none
3 private
4
5 type :: vertex
6 !! a vertex of a directed acyclic graph (DAG)
7 integer ,dimension (:),allocatable :: edges
8 integer :: ivertex = 0 !vertex number
9 logical :: checking = .false.

10 logical :: marked = .false.
11 contains
12 procedure :: set_edges
13 end type vertex
14
15 type ,public :: dag
16 !! a directed acyclic graph (DAG)
17 type(vertex),dimension (:),allocatable :: vertices
18 contains
19 procedure :: set_vertices => dag_set_vertices
20 procedure :: set_edges => dag_set_edges
21 procedure :: toposort => dag_toposort
22 end type dag
23
24 contains
25
26 subroutine set_edges(me,edges)
27 !! specify the edge indices for this vertex
28 class(vertex),intent(inout) :: me
29 integer ,dimension (:),intent(in) :: edges
30 allocate(me%edges(size(edges)))
31 me%edges = edges
32 end subroutine set_edges
33
34 subroutine dag_set_vertices(me,nvertices)
35 !! set the number of vertices in the dag
36 class(dag),intent(inout) :: me
37 integer ,intent(in) :: nvertices !! number of

vertices
38 integer :: i
39 allocate(me%vertices(nvertices))
40 me%vertices%ivertex = [(i,i=1,nvertices)]
41 end subroutine dag_set_vertices
42
43 subroutine dag_set_edges(me,ivertex ,edges)
44 !! set the edges for a vertex in a dag
45 class(dag),intent(inout) :: me

46 integer ,intent(in) :: ivertex !! vertex number
47 integer ,dimension (:),intent(in) :: edges
48 call me%vertices(ivertex)%set_edges(edges)
49 end subroutine dag_set_edges
50
51 subroutine dag_toposort(me,order)
52 !! main toposort routine
53 class(dag),intent(inout) :: me
54 integer ,dimension (:),allocatable ,intent(out) ::

order
55 integer :: i,n,iorder
56 n = size(me%vertices)
57 allocate(order(n))
58 iorder = 0 ! index in order array
59 do i=1,n
60 if (.not. me%vertices(i)%marked) &
61 call dfs(me%vertices(i))
62 end do
63
64 contains
65
66 recursive subroutine dfs(v)
67 !! depth -first graph traversal
68 type(vertex),intent(inout) :: v
69 integer :: j
70 if (v%checking) then
71 error stop 'Error: circular dependency.'
72 else
73 if (.not. v%marked) then
74 v%checking = .true.
75 if (allocated(v%edges)) then
76 do j=1,size(v%edges)
77 call dfs(me%vertices(v%edges(j)))
78 end do
79 end if
80 v%checking = .false.
81 v%marked = .true.
82 iorder = iorder + 1
83 order(iorder) = v%ivertex
84 end if
85 end if
86 end subroutine dfs
87
88 end subroutine dag_toposort
89
90 end module toposort_module

Fig. 8 Topological SortingModule. This code can be used to determine the order in which to serially propagate
a set of segments whose dependencies are specified. The main routine is dag_toposort(), which contains an
internal recursive procedure that performs a depth-first traversal of the graph.

1 program main
2 use toposort_module
3 implicit none
4 type(dag) :: d
5 integer ,dimension (:),allocatable :: order
6 call d%set_vertices (5)
7 call d%set_edges (2 ,[1]) !2 depends on 1
8 call d%set_edges (3,[5,1]) !3 depends on 5 and 1
9 call d%set_edges (4 ,[5]) !4 depends on 5

10 call d%set_edges (5 ,[2]) !5 depends on 2
11 call d%toposort(order)
12 write (*,*) order ! prints 1,2,5,3,4
13 end program main

(a) Topological Sorting Example. The module from Fig. 8 is
used to compute the propagation order of a list of segments
(in this case represented as integers) whose dependencies are
known in advance.

S1

S2

S3

S5
S4

(b) DAG Diagram for Segment Dependencies.
Here, S2→ S1 indicates that segment 2 depends
on segment 1 (i.e., segment 2 is inheriting some
data from segment 1).

Fig. 9 Use Case for Topological Sorting to Determine Segment Propagation Order.

8

+

**

x 2

**

y 2

(a) x**2 + y**2

sqrt

+

**

x 2

**

y 2

(b) sqrt(x**2 + y**2)

+

3.5 *

a b

(c) 3.5+a*b

*

+

3.5 a

b

(d) (3.5+a)*b

Fig. 10 Binary Syntax Trees Associated with Various Infix Expressions.

1 type , public :: cpnode
2 !! represents a single cpnode of a binary

calculator tree.
3 !! in general type(cpnode) variables should always

be pointers.
4 integer :: id = 0
5 !! id tag for this cpnode , used for debugging
6 class(cpnode), pointer :: left
7 !! pointer to the left child cpnode
8 class(cpnode), pointer :: right
9 !! pointer to the right child cpnode

10 class(cpnode), pointer :: parent
11 !! points to the parent cpnode (null for root)
12 contains
13 procedure :: eval => eval_node
14 !! returns the scalar floating point value for

this node.
15 procedure :: set_left => set_left
16 !! sets the left child node
17 procedure :: set_right => set_right
18 !! sets the right child node
19 procedure :: set_parent => set_parent
20 !! sets the parent node
21 procedure :: print => print_node
22 !! set the print bound method for debugging
23 end type cpnode
24
25 type , public , extends(cpnode) :: literal_node
26 !! implementation of cpnode that represents

literal numeric values
27 real(wp) :: value = 0.0_wp
28 !! the value represented by this node
29 contains

30 procedure , public :: eval => eval_literal_node
31 !! evaluation bound method specific to literal

nodes
32 end type literal_node
33
34 type , public , extends(cpnode) :: variable_node
35 !! implementation of cpnode that represents a

variable value
36 integer :: varindex = 0
37 !! index in the array of variable values for this

node
38 contains
39 procedure , public :: eval => eval_variable_node
40 !! evaluation bound procedure specific to variable

nodes
41 end type variable_node
42
43 type , public , extends(cpnode) :: func_node
44 !! implementation of cpnode that represents a

function or operator
45 character(len=op_len) :: func = repeat(' ',op_len)
46 !! function or operator name for this node
47 procedure(cpFunc), nopass , pointer :: f
48 !! the function represented by this node
49 contains
50 procedure , public :: set_function
51 !! bound procedure to set the function represented

by this node
52 procedure , public :: eval => eval_func_node
53 !! evaluation bound procedure specific to function

nodes
54 end type func_node

Fig. 11 Base Class and Derived Classes of Nodes for a Binary Syntax Tree.

• Proceed through the string, keeping track of parentheses “depth”.
• If an operator is found and the parentheses depth is zero, store it.
• If we find an operator with lower precedence, it becomes the “splitting operator”
• If the operator found has the same precedence as the current splitting operator but it associates left-to-right,
override the current splitting operator.

• If a splitting operator is found then return the following: the operator, the portion of the string left of the
operator, and the portion of the string right of the operator.

3) If split_equation() returns a splitting operator, then
• Form a new FunctionNode associated with the splitting operator
• Recursively call parse_calc() on the left and right substrings.

– The nodes associated with the left and right substrings become the left and right children of the
FunctionNode.

4) If split_equation() finds no splitting operator, then test for one of the following conditions:
• Attempt to read the contents of the calculator string into a floating point variable. If no error is raised, the
text represents a literal numeric value and parse_calc() returns a LiteralNode object.

9

• Attempt to match the text to the known function names. If it matches, return a FunctionNode associated
with the function and recursively call parse_calc() on the arguments to the function, setting them to the
left and right children of the FunctionNode.

• Attempt to match the text to the known variable names. If it matches, parse_calc() returns a VariableNode
object.

3. Evaluation of Syntax Trees
Once an expression has been parsed and stored as a tree structure, it can be evaluated with a relatively simple

algorithm. The polymorphism available in modern Fortran simplifies the logic by allowing evaluation functions that are
specific to each class of node:

• Nodes that represent literal numeric values simply return the floating point value which they represent.
• Nodes that represent variables, VariableNodes, return the floating point value of their associated variable.
• Nodes that represent functions or operators first evaluate their child nodes and then pass those return values as
arguments to the function with which they are associated.

The evaluation algorithm is a recursive, depth-first traversal of the tree in pre-order. If a given node has child nodes,
they are evaluated first before evaluating the node itself. Figure 12 demonstrates the evaluation algorithm on a sample
tree.

+

**

x
3

2

sqrt

y

+

**

x
3

2

2
sqrt

y

+

**

9

x
3

2

2
sqrt

y

+

**

9

x
3

2

2
sqrt

y
4

+

**

9

x
3

2

2
sqrt

2

y
4

+

11

**

9

x
3

2

2
sqrt

2

y
4

Fig. 12 Example of a recursive evaluation of a tree for the expression "x**2 + sqrt(y)" where x = 3 and
y = 4.

F. Gravity Models
Often, a significant computational component of a high-fidelity spacecraft simulation is the evaluation of the

spherical harmonic gravitational field. In Copernicus, the nonsingular algorithm of Pines is used [25], which has been
refined by various others over the years [26]. The original published Fortran 77 code [27] is fairly straightforward and
does not require much effort to modernize (see, for example, the geopotential_module in the Fortran Astrodynamics
Toolkit). For small, irregularly-shaped bodies such as asteroids, a polyhedral gravity model may also be used, where the
acceleration a is computed by the following equation (see Reference [28] for details):

a = ∇U = Gσ ©«
∑

f ∈ faces
F f · r f · ω f −

∑
e ∈ edges

Ee · re · Le
ª®¬ (1)

For a very complex polyhedron with many faces, computation of the acceleration is very computationally intensive, but
fortunately, the sums are easily parallelizable with OpenMP [29] as shown in Fig. 14, where Eq. (1) is evaluated in a set
of two loops (one for the edge terms and another for the face terms).

In Copernicus, the various types of central-body gravity models are extensions of an abstract gravity_model
class, part of a general force model for trajectory segments (which can include other gravitating bodies, solar radiation
pressure, and atmospheric drag) when they are propagated. Fig. 13 shows the basic concept, where the polyhedral model
is an extension of the abstract type, and contains the acceleration routine (get_acc_polyhedral()) shown in Fig. 14).
The polyhedral_model class also contains all the various variables and methods required to compute the acceleration.

10

1 type ,abstract ,public :: gravity_model
2 !! The base abstract class for the various models
3 contains
4 ! each has to define this method:
5 procedure(acc_function),deferred ,public :: get_acc
6 end type gravity_model
7
8 type ,extends(gravity_model),public :: polyhedral_model
9 !! Polyhedral gravity model

10 contains
11 procedure ,public :: get_acc => get_acc_polyhedral
12 end type polyhedral_model
13
14 abstract interface
15 subroutine acc_function(me,r,a)
16 import :: wp, gravity_model
17 class(gravity_model),intent(inout) :: me
18 real(wp),dimension (3),intent(in) :: r
19 real(wp),dimension (3),intent(out) :: a
20 end subroutine acc_function
21 end interface

(a) Abstract Gravity Model and Extension.

Gravity Model

Pointmass Polyhedral Geopotential

Pines

(b) General Gravity Model Class Hierarchy

Fig. 13 The polyhedral_model is an extension of the abstract gravity_model class. The extended class also
includes an initialization method, and any other methods and data that are needed for the model (not shown
here). It inherits all the data and other methods in the base class. For example, while the pointmass model only
contains the gravitational parameter µ, the polyhedral model contains the polyhedral mesh coordinates and
other ancillary data.

G. ODE IVP Solvers
Copernicus includes a large collection of numerical methods for segment propagation, from fixed-step Runge-Kutta

and Nyström methods of various orders, to variable-step variable-order Adams methods. There are numerous publicly-
available Fortran 77 variable-step variable-order Adams-type codes that work well for the orbit problem (e.g., DLSODE
[30], DVODE [31], DDEABM [32], and DIVA‡‡). Very few of these have been updated by the original authors in
decades (CVODE, the C++ successor to DVODE, continues to be developed at LLNL). However, many of the original
Fortran 77 codes are fairly easy to improve using modern Fortran concepts. Copernicus includes modernized versions
of some of these codes. An open source modernized update to DDEABM is also available§§, which includes new
features not available in the original version made possible by the modern language features. The refactored version is
object-oriented and thread safe. It also includes a new event finding capability (which incorporates the well-known
ZEROIN algorithm for finding a root on a bracketed interval [33]), and the ability to export intermediate points via a
user-defined method. Use of the algorithm is via a single class, which can be extended to include the data to be passed
into the derivative function.

H. Ephemeris
A celestial body ephemeris is another necessary component of a spacecraft trajectory design and optimization

program. Copernicus uses the ephemeris system provided by the Fortran 77 SPICELIB from JPL/NAIF [34], but also
allows for pre-splining the ephemeris using various order interpolating B-Splines¶¶. This technique eliminates the
SPICELIB overhead and can result in much faster execution time [35], and also provides a workaround for the fact that
SPICELIB is not thread safe. Unfortunately, many classic Fortran codes such as SPICELIB have never moved beyond
Fortran 77 and contain all the limitations of a programming language that was superseded almost thirty years ago.
SPICELIB is severely restricted by the constraints of Fortran 77 (e.g., maximum number of kernels that can be loaded,
maximum number of pool variables, lack of thread safety, impossible to have more than one SPICELIB instance at a time,
and a coding style that uses ENTRY statements that were made obsolete by modules in Fortran 90). This is unfortunate
since SPICELIB is exceptionally well-written and well-documented code. A modern object-oriented and thread safe
SPICELIB could be produced by refactoring the code using modern Fortran techniques, and C-interoperability could be

‡‡JPL MATH77 Library. http://netlib.org/math/
§§Modern Fortran implementation of the DDEABM Adams-Bashforth algorithm. https://github.com/jacobwilliams/ddeabm
¶¶Multidimensional B-Spline Interpolation of Data on a Regular Grid. https://github.com/jacobwilliams/bspline-fortran

11

http://netlib.org/math/
https://github.com/jacobwilliams/ddeabm
https://github.com/jacobwilliams/bspline-fortran

1 pure subroutine get_acc_polyhedral(me,r,a)
2
3 use iso_fortran_env , only: wp => real64 ! using double precision reals
4
5 implicit none
6
7 class(polyhedral_model),intent(in) :: me
8 real(wp),dimension (3),intent(in) :: r !! Spacecraft position vector (in body -fixed model frame) [km]
9 real(wp),dimension (3),intent(out) :: a !! Acceleration vector in body -fixed model frame [\(km/s^2 \)]

10
11 real(wp),dimension (3) :: a_sumedge ,a_sumface
12 real(wp),dimension (3) :: r1vec ,r2vec ,r3vec
13 real(wp),dimension (3) :: temp_vec
14 real(wp) :: l_e ,r1mag ,r2mag ,r3mag ,wf,numer ,denom ,term
15 integer :: i
16
17 a_sumedge = 0.0_wp; a_sumface = 0.0_wp ! initialize
18
19 !$omp parallel do default(shared) private(i,r1vec,r2vec,r1mag,r2mag,numer,denom,term,l_e) reduction(+:a_sumedge)
20 do i = 1, me%n_edges !Edge loop
21
22 r1vec = me%v(:,me%edges(1,i)) - r !vectors from the field point to the edge endpoints
23 r2vec = me%v(:,me%edges(2,i)) - r
24 r1mag = norm2(r1vec)
25 r2mag = norm2(r2vec)
26 term = r1mag + r2mag !calculate the logarithm expression , l_e
27 numer = term + me%en(i)
28 denom = term - me%en(i)
29 l_e = log(numer/denom)
30
31 !sum the edge contributions:
32 a_sumedge = a_sumedge + matmul(me%ee(i)%matrix*l_e ,r1vec) ! acceleration
33
34 end do
35 !$omp end parallel do
36
37 !$omp parallel do default(shared) private(i,r1vec,r2vec,r3vec,r1mag,r2mag,r3mag,numer,denom,term,wf,temp_vec) reduction(+:a_sumface)
38 do i = 1, me%n_plates !Face loop
39
40 r1vec = me%v(:,me%p(1,i)) - r ! vectors from field point to face vertices
41 r2vec = me%v(:,me%p(2,i)) - r
42 r3vec = me%v(:,me%p(3,i)) - r
43 r1mag = norm2(r1vec)
44 r2mag = norm2(r2vec)
45 r3mag = norm2(r3vec)
46 numer = dot_product(r1vec ,cross(r2vec ,r3vec))
47 denom = r1mag*r2mag*r3mag + &
48 r1mag*dot_product(r2vec ,r3vec) + &
49 r2mag*dot_product(r3vec ,r1vec) + &
50 r3mag*dot_product(r1vec ,r2vec)
51 wf = 2.0_wp * atan2(numer , denom) !calculate the solid angle term , wf
52
53 !sum the face contributions
54 temp_vec = matmul(me%ff(i)%matrix*wf,r1vec)
55 a_sumface = a_sumface + temp_vec ! acceleration
56
57 end do
58 !$omp end parallel do
59
60 a = me%gdensity *(a_sumface - a_sumedge) ! acceleration (see Equation 1)
61
62 end subroutine get_acc_polyhedral

Fig. 14 Polyhedral Gravity Acceleration Core Routine. This is a method in the polyhedral_model class (an
extension of the abstract gravity_model class shown in Fig. 13). The class contains all the necessary data such as
the vertex coordinates (me%v), plate indices (me%p), edge indices (me%edges), edge lengths (me%en), edge matrices
(me%ee), and the face normal outer products (me%ff). All of these quantities are computed when the class is
initialized. See [29] for a detailed description of this code.

12

1 subroutine ballistic_derivs(me,et,x,xdot)
2
3 class(segment),intent(inout) :: me
4 real(wp),intent(in) :: et !! ephemeris time [sec]
5 real(wp),dimension (:),intent(in) :: x !! state [r,v] in inertial frame (moon -centered)
6 real(wp),dimension (:),intent(out) :: xdot !! derivative of state [dx/dt]
7
8 reaL(wp),dimension (6) :: rv_earth_wrt_moon ,rv_sun_wrt_moon
9 real(wp),dimension (3,3) :: rotmat

10 real(wp),dimension (3) :: r,rb,v,a_geopot ,a_earth ,a_sun
11 logical :: status_ok
12
13 r = x(1:3); v = x(4:6) ! get state
14 rotmat = icrf_to_iau_moon(et) ! rotation matrix from inertial to body -fixed Moon frame
15 rb = matmul(rotmat ,r) ! r in body -fixed frame
16
17 call me%grav%get_acc(rb,a_geopot) ! get the acc due to the geopotential
18 a_geopot = matmul(transpose(rotmat),a_geopot) ! convert acc back to inertial frame
19
20 call me%eph%get_rv(et,body_earth ,body_moon ,rv_earth_wrt_moon ,status_ok) ! 3rd body vecs (inertial wrt moon)
21 call me%eph%get_rv(et,body_sun ,body_moon ,rv_sun_wrt_moon ,status_ok)
22
23 a_earth = third_body_gravity(r,rv_earth_wrt_moon (1:3),mu_earth) ! 3rd body perturbations
24 a_sun = third_body_gravity(r,rv_sun_wrt_moon (1:3),mu_sun)
25
26 xdot = [v, a_geopot + a_earth + a_sun] ! total derivative vector
27
28 end subroutine ballistic_derivs

Fig. 15 Ballistic Equations of Motion for a Spacecraft in the Vicinity of the Moon. In this example Fortran
Astrodynamics Toolkit usage, a segment class contains an instance of a ephemeris (eph) as well as a geopotential
gravity model (grav) for the Moon. The ephemeris is used to compute the perturbations from the Earth and
Sun.

used to provide interfaces to other programming languages. Virtually none of the mathematical code would need to be
modified. Be that as it may, NAIF has recently announced that a modern edition of SPICELIB will be produced by
rewriting the entire library in C++.

A modern Fortran object-oriented celestial body ephemeris system has been created that is based on the legacy
Fortran 77 JPLEPH code [36]. This system is included in the Fortran Astrodynamics Toolkit, and is a fairly light
refactoring of the original code (as none of the mathematics have changed). The ephemeris is a class, and it allows
for thread-safe use and multiple instantiations, neither of which are possible in either the original code or SPICELIB.
The ephemeris class can be employed for the trajectory segment propagation problem by having a segment include
an instance of an ephemeris. An example use case for this is shown in Fig. 15, where the equations of motion of a
spacecraft at the Moon include the third-body perturbations from the Earth and Sun. An ephemeris is also necessary for
certain state transformations (for example conversion between an inertial frame and an Earth-Moon rotating frame), so a
general-purpose state transformation class also requires an instance of the ephemeris to be input to the transformation
method.

I. Optimizers & Nonlinear Equation Solvers
Historically, much of spacecraft trajectory optimization at NASA has been done using Fortran 77 solvers such as

VF13AD [37], SLSQP [38], NPSOL, SNOPT [39], and IPOPT [40] (IPOPT originally was written in Fortran, and
though eventually converted to C++, still includes many third-party Fortran components). These general solvers can
be used to solve nonlinear programming problems to minimize a scalar objective function subject to general equality
and inequality constraints and to lower and upper bounds on the variables. Most complex problems in Copernicus are
solved using SNOPT, which has proven very effective for very large and sparse trajectory problems. A new modern
Fortran version of SNOPT has been under development for some time. SLSQP (suitable only for smaller problems) is
also available in Copernicus and OTIS (as well as the Python SciPy package), and a new open source modern Fortran
refactoring is also available∗∗∗.

For some problems not requiring optimization, a very simple differential corrector solver can often be used [41].
∗∗∗Modern Fortran Edition of the SLSQP Optimizer. https://github.com/jacobwilliams/slsqp

13

https://github.com/jacobwilliams/slsqp

1 subroutine nle_solver(me,x)
2
3 class(nle_solver_class),intent(inout) :: me
4 real(wp),dimension (:),intent(inout) :: x !! control variable vector
5
6 integer :: iter
7 real(wp),dimension(me%m,me%n) :: fjac !! jacobian matrix
8 real(wp),dimension(me%n) :: p !! search direction
9 real(wp),dimension(me%m) :: fvec !! function vector

10
11 fvec = me%func(x) !evaluate the function at the initial point
12 do iter = 1,me%max_iter
13 fjac = me%grad(x) ! compute the jacobian matrix
14 p = linear_solver(fjac ,-fvec) ! compute the search direction p by solving linear system
15 ! [this is just a wrapper for DGELS]
16 x = x + me%alpha * p ! compute new x
17 fvec = me%func(x) ! evaluate the function at the new point
18 if (maxval(abs(fvec)) <= me%ftol) exit ! check for convergence in f
19 end do
20
21 end subroutine nle_solver

Fig. 16 Overview of aDifferential Corrector Solver. The func() and grad() functions in the nle_solver_class
are user-supplied functions defined when the base class is extended (all the data necessary to compute the
functions is contained in the class, thus the solver code can be very generic).

Solvers of this sort use a Newton-style iteration step from a previous control vector xk to the next one xk+1, using:

xk+1 = xk − αJ−1f(xk) (2)

where x is the n × 1 vector of control variables, f is the m × 1 vector of constraint violations, and J is the m × n Jacobian
matrix. If n > m then J−1 is the minimum norm pseudoinverse of the underdetermined linear system, which can be
computed, for example, using the LAPACK dgels() subroutine. See Fig. 16 for a very basic overview of this type
of code. A robust, general purpose solver is much more complex than the example shown here, and includes error
checking, other types of convergence and singularity checks, as well as various options for computing the step size α
(for example, by using a line search). For square systems (n × n) there are many publicly available high-quality Fortran
77 solvers, such as HYBRJ from MINPACK, an implementation of the Powell hybrid method [42].

J. Gradients
Gradient-based solvers and optimizers (such as SNOPT) require computation of the derivatives of the objective

function and the constraints with respect to the control variables (i.e., the Jacobian). Some solvers (such as IPOPT) also
allow or require the input of second derivative information as well (i.e., the Hessian). Computing the gradients can be
the most time-consuming part of the optimization problem, and accurate gradients are critical to successful convergence.

The classical method to compute gradients is via finite differences. Finite differences have the advantage of being
simple to compute, and they can be used if the function contains third-party or “black-box” components. Copernicus
primarily uses finite differences to compute gradients (although other methods are also available such as differentiation of
interpolating polynomials such as cubic splines). If fn = f (x+nh) is a function evaluation given a control variable x and
a perturbation h, then the set of three-point finite differences approximating the derivative at x are (−3 f0+4 f1− f2)/(2h),
(− f−1 + f1)/(2h), and (f−2 − 4 f−1 + 3 f0)/(2h). In practice, the second one (the classical central difference method)
is often used, but the others are useful if the central difference would violate the variable bounds (for example, if the
function is undefined beyond a certain bound). Copernicus includes a full set of formulas from two to eight points
[43], as well as algorithms for tuning the step size h (which is critical when using finite differences) [44]. A new open
source object-oriented finite-difference library (NumDiff) is also available with a variety of user-selectable methods†††

including from two to six point formulas as well as Neville’s algorithm [45]. NumDiff also includes an implementation
of a graph coloring algorithm for efficient computation of the Jacobian by taking advantage of the sparsity pattern [46].
Another Fortran numerical differentiation library also exists that employs OpenMP and MPI for parallelization [47].

For applications where the user has full control of the problem function and all the source code, other types of gradient
methods are also possible. Since complex numbers are natively supported in Fortran, complex-step differentiation

†††Modern Fortran Numerical Differentiation Library. https://github.com/jacobwilliams/NumDiff

14

https://github.com/jacobwilliams/NumDiff

1 module operator_overloading
2
3 use iso_fortran_env , only: wp => real64
4 implicit none
5
6 private
7
8 type ,public :: a_real
9 private

10 real(wp),public :: value = 0.0_wp
11 real(wp),public :: grad = 0.0_wp
12 end type a_real
13
14 interface operator (*) ! overload multip. operator
15 module procedure :: aa_multiply
16 end interface
17 public :: operator (*)
18
19 interface sin ! overload sin() function
20 module procedure :: a_sin
21 end interface
22 public :: sin
23
24 contains
25
26 pure elemental function aa_multiply(a,b) result(c)
27 !! a_real * a_real
28 type(a_real),intent(in) :: a
29 type(a_real),intent(in) :: b

30 type(a_real) :: c
31 c = a_real(a%value * b%value ,&
32 b%value*a%grad + a%value*b%grad)
33 end function aa_multiply
34
35 pure elemental function a_sin(a) result(c)
36 !! sin(a_real)
37 type(a_real),intent(in) :: a
38 type(a_real) :: c
39 c = a_real(sin(a%value), cos(a%value)*a%grad)
40 end function a_sin
41
42 end module operator_overloading
43
44 program operator_overloading_test
45
46 use iso_fortran_env , only: wp => real64
47 use operator_overloading
48
49 implicit none
50
51 type(a_real) :: x,z
52
53 x = a_real (2.0_wp ,1.0 _wp) ! get derivative w.r.t. x
54 z = x*sin(x) ! computes value and dz/dx
55
56 write (*,*) z%value , z%grad ! 1.818594 , 0.077003
57
58 end program operator_overloading_test

Fig. 17 Operator Overloading to Compute Gradients. In this example, we define a new a_real type to replace
all real variables in a set of calculations where gradients are required. For the most general case, all operators,
assignments, and intrinsic functions must be overloaded. In this example, it is shown how to overload the
multiplication operator and the sin() function to compute the function value (z) and gradient (dz/dx) for the
function z(x) = x sin x when x = 2.

is an option [48]. Operator overloading (see Fig. 17 for a basic example) can also be used to compute the gradients
analytically. Various modern Fortran libraries are available for differentiation using operator overloading‡‡‡ [49].
Finally, quadruple precision (real128, which is natively supported in Fortran), or even arbitrary precision (available via
third-party libraries [50]) can be employed to reduce roundoff error in computations and produce more accurate finite
difference gradients.

III. Coarray Fortran
Thanks to the introduction of coarrays, Fortran is a partitioned global address space (PGAS) language, allowing

programmers to write parallel programs in standard conforming Fortran without relying on third party libraries or
compiler directives and extensions. Coarray Fortran (CAF) [51, 52] has been part of the Fortran language since the
2008 standard.

A defining characteristic of PGAS languages is the ability to perform operations with global memory, regardless
of whether the machine is a leadership-class, petascale HPC cluster, or a shared-memory laptop. This presents the
application programmer with a consistent programming model across different computer architectures, including
distributed memory, shared memory, and heterogeneous systems. Another feature of PGAS languages is the ability to
manipulate remote memory through fetching remote values, “gets,” or storing remote values, “puts,” without directly
involving the processing element (PE) that “owns” the memory in question. This presents the programmer with a
simplified programming model reminiscent of shared memory paradigms, even when the program is running across
many nodes of a distributed and/or heterogeneous system. In PGAS languages the burden of explicitly coordinating
communication between the sender(s) and receiver(s) is removed; one-sided communication is the default, and less time
is spent waiting and coordinating with remote PEs relative to the more common two sided message passing paradigms.
A one-sided communication strategy is achievable with the Message Passing Interface (MPI), as of MPI-3, but only at
the cost of substantial additional complexity and programmer effort. An advantage of one-sided communication is that
whenever hardware support for remote direct memory access (RDMA) is present, the remote PE need not be involved in
the data transfer at all, both at the program and operating system (OS) level [53]. Computations on the remote image

‡‡‡Automatic Differentiation (1st order) for Fortran 95. https://github.com/pv/adjac

15

https://github.com/pv/adjac

may proceed uninterrupted while data is delivered or retrieved, thus overlapping communication with computation.
While all PGAS languages present some access to global memory, they may differ in other, substantial ways. Some

PGAS languages, such as Chapel [54] do their best to provide high-level interfaces that can hide and abstract all details
about parallelism from the application programmer. While Chapel does provide a means to take more explicit control of
the parallelism when required, many programs can be written in such a way that they appear no different than serial
programs. Other PGAS languages, or language extensions such as XcalableMP [55], provide “global view” objects
where the array objects appear to be indexed conventionally, but ranges of indices reside on physically distinct distributed
memories. For example, a “global view” matrix is represented as a two-dimensional array with non-overlapping portions
residing in physically distinct memories. While such a “global view” object could be emulated with CAF, the CAF
programming model is closer to a more traditional single program, multiple data (SPMD) paradigm.

The parallelism in CAF derives from two key concepts: images and coarrays. When a CAF program is launched, it
is replicated N times. Each copy is called an image and is approximately analogous to an MPI “rank.” The intrinsic
function this_image() returns the image index of the current image, allowing each image to distinguish itself, and
the intrinsic function num_images() provides access to the total number of images, N , spawned. Each variable is
local to the image, and cannot be accessed by remote images unless it is declared as a coarray. Arrays and scalars,
both statically and dynamically allocated, of intrinsic or user defined type, may be declared as coarrays, with some
restrictions. Coarrays differ from other variables in that they are declared with a codimension having cobounds. The
codimension utilizes square brackets to distinguish it from traditional array dimensions denoted by parentheses (see
Fig. 18). The number of images spawned is fixed before the program is launched, usually specified by an environment
variable or a job launcher script on distributed memory systems. Once the program is launched, the number of images
cannot be altered. As a consequence, the last codimension is never explicitly specified in the program and must be
syntactically specified with an asterisk when a coarray variable is declared or allocated. Each image in a CAF program
corresponds to a single partition of a global address space. Coarray variables are entities in this global address space
that can be retrieved or modified from any partition, when a coindex is specified.

Coordination and reasoning about parallel CAF programs is achieved through the concept of execution segments and
image control statements. Image control statements are either explicit or implicit coordinations and synchronizations
between different images. A list of CAF image control statements is given in Table 2. Image control statements separate
execution segments, which are the mechanism that allows reasoning about global program state. If an execution segment
m on image P (Pm) is terminated by an image control statement that matches a corresponding image control statement
demarcating the beginning of an execution segment n on image Q (Qn) then execution segment Pm is said to be ordered
with respect to Qn and to precede it. In such a case, a “get,” performed in segment Qn of a coarray variable residing
on image P and modified in execution segment Pm yields the expected value. Similarly a “put” of a coarray variable
where segment Qn writes to a variable residing on image P ensures that the write happens after segment Pm is finished
executing. If images are un-ordered with respect to each-other, then the behavior of “gets” and “puts” is undefined if the
coarray variable in question is also locally modified or used. In un-ordered segments there is no guarantee that a “get”
of a coarray variable that is locally modified during the un-ordered segments will yield the value before or after the
modification, and, similarly, a “put” of a coarray variable read locally in the segments may or may not overwrite the
variable before, after, or while it is being read. Ordered segments provide a means to guarantee the state of remote
coarray variables. A few lines of source code demonstrating these principles is shown in Fig. 18.

The chief benefits of choosing CAF over other parallel runtime solutions are that CAF provides a small but powerful
and flexible API that is easy to learn, is architecture and implementation agnostic, and is portable and performant. The
programmer is not tied to any particular architecture (shared vs. distributed memory) or implementation technology.
As technologies change, the same CAF program can be run on new systems, using new network fabrics or back end
transport layers without any modification required by the programmer. With a suitable implementation, such as GFortran
with OpenCoarrays,§§§ [56] it may even be possible to switch the underlying communication technology by simply
re-linking the program [57]. This is useful if a bug or defect is discovered in an underlying component. CAF has a much
more concise API than many other alternatives like MPI, which has hundreds of procedure calls to learn. Therefore,
learning CAF is less of a burden on programmers, and enables performant one-sided communication characteristic
of PGAS languages. The one-sided nature allows programmers to overlap communication and computation, thus
hiding the latency associated with communication. Compilers are free to make arbitrary optimizations including out of
order execution and code movement within an execution statement, so a smart enough compiler can perform some
optimizations on both “puts” where the coindex appears on the left hand side of an assignment, as well as “gets” where

§§§OpenCoarrays: A transport layer for coarray Fortran compilers. https://github.com/sourceryinstitute/OpenCoarrays

16

https://github.com/sourceryinstitute/OpenCoarrays

Table 2 List of CAF Image Control Statements and Their Meanings.

Image Control Statement Summary

sync all
A global synchronization between all images. Each image waits until all
images have reached a sync all statement, analogous to an MPI barrier.

sync images (image-set)
image-set is a rank 1 integer array of distinct image indices or an asterisk
to denote all other images. This provides coordination between one or

more individual images.

lock or unlock User defined coordination using lock_type provided by
iso_fortran_env.

critical and end critical
Serialize the execution segment defined between critical and end

critical.

Coarray allocation & deallocation
Global synchronization when a coarray variable is allocated or

deallocated, either explicitly via allocate and deallocate or when a
coarray variable goes out of scope.

sync memory
Ensure global memory views are consistent when using some user

defined segment ordering.

event wait and event post
An implementation of counting semaphores using the event_type

provided by iso_fortran_env.
end program, stop, error stop Terminate program execution.

1 ! ...
2 real(wp) :: a, x, local_var1 , local_var2 ! variables local to the image
3 real(wp),codimension [*] :: co_var1 , co_var2 ! coarray variables
4
5 ! ...
6 ! Perform some local computations with coarray variables on all images
7 co_var1 = a*x + co_var2
8 ! Use the sync images image control statement to coordinate image P and image Q
9 if (this_image () == P) then

10 sync images(Q) ! Image P waits for image Q, end segment P_m
11 else if (this_image () == Q) then
12 sync images(P) ! Image Q waits for image P, begin segments Q_n and P_n
13 local_var1 = co_var1[P] ! "get" co_var1 from image P defined in segment P_m
14 ! do some work with local_var1
15 co_var2[P] = local_var1 ! "put" co_var2 without any danger of overwriting the value needed in segment P_m
16 end if
17 ! Problematic un-ordered assigment:
18 co_var2 = local_var2 ! Causes ambiguous value on image P
19 ! co_var2 on image P may have the value local_var2 OR the value local_var1 from image Q due to assignment of
20 ! co_var2 residing on P from unordered execution segments P_n and Q_n
21 ! ...

Fig. 18 Code Snippet Demonstrating Execution Segment Ordering and Basic Coarray Syntax. Execution
segment Pm uses local coarray variable co_var2 to compute a value assigned to local coarray variable co_var1.
A sync images image control statement is then used to ensure that image Q can “get” the correct value co_var1
from image P after the computation in segment Pm has taken place, and that segment Qn does not prematurely
overwrite co_var2 while the old value is still needed on image P when a “put” is performed by segment Qn.

17

the coindex appears on the right hand side of an assignment. Necessarily, due to the semantics of the language, execution
cannot proceed until the remote data transfer has completed in the case of a “get.” While, in the case of a “get,” the
compiler may be able to initialize the transfer earlier in the current execution segment, with a “put” the local image
sends the coarray data to the remote image, and is immediately able to proceed once the data has been dispatched.
Therefore it is likely that, in cases were data motion is a bottleneck, improved parallel scaling is achievable by preferring
“puts” over “gets” and “sending” the data via an assignment with a coindexed variable on the right-hand side as early in
the computation as possible.

The coarray syntax has some additional benefits over other paradigms. The square bracket coindex notation serves
as a visual cue to indicate whenever communication is occurring between images. When a coarray variable appears
without square brackets, it is a local reference and may be treated as any other local object. This makes the parallelization
of serial Fortran programs straightforward, since syntactic modifications required to create a coarray variable from an
extant one are limited to the variable declaration, explicit allocation (where applicable) and any places where references
to the variable on a remote image are required. Otherwise, the variable may be treated as unchanged when performing
local computations, and passed to procedures without modification, so long as the procedures do not require remote
coarray references.

Some of the challenges when parallelizing programs with coarrays include restrictions on what types of variables
may be coarrays. In particular, no references to polymorphic subobjects of a coindexed object, or to a coindexed object
that has a polymorphic allocatable subcomponent are allowed. Furthermore, coarray derived types may have type-bound
procedures and procedure pointers, but procedure pointer references through coindexed objects are not allowed. (I.e.,
procedures cannot be called via a procedure pointer of a coindexed object, since the procedure being called may be
different, or undefined between images.) Furthermore, for allocatable coarray arrays and components, the allocation
status and shape must agree to avoid implicit reallocation on assignment.

Despite these limitations, CAF is a convenient way to parallelize extant serial Fortran programs, to quickly prototype
parallel programs that may later be implemented with a more complicated parallel runtime implementation, and to write
portable and performant new parallel applications. Like any programming language or paradigm, CAF is better suited
for some problems than others, but is general and flexible enough that its performance oriented design and ease of use
make it an attractive candidate for a wide set of problems.

IV. Refactoring Legacy Code
Modern Fortran is almost entirely backward compatible with Fortran 77 (exceptions include various deleted features

from the language, but in practice, most compilers still allow them to be used, although special compiler flags may be
necessary). Thus, many, if not most, legacy Fortran 77 codes can be used without modification in modern applications
(e.g., the Copernicus use of SNOPT and SPICELIB). However, refactoring can often be advantageous, improving
readability as well as laying the groundwork for other modernizations, as demonstrated in this paper and others [58, 59].
A simple example of a refactored legacy subroutine is shown in Fig. 19. This code is a basic binary search routine of
a sorted integer array taken from the NASTRAN program originally written in the early 1970s [60]. The original is
classic “spaghetti code” and very difficult to follow, while the modernized version is quite straightforward. While the
fixed-form to free-form conversion can be done with any number of automated tools that are available, unravelling the
“spaghetti” can take more effort (although there are tools to automate this process as well, such as the commercial SPAG
tool for Fortran code restructuring, which was used for this example).

V. Interoperability with Other Programming Languages
Modern object-oriented Fortran can be integrated with other programming languages (such as C, C++, and Python)

through the standardized C-interoperability language feature. An example of this is shown in Fig. 20a. This module
provides a C interface to the geopotential gravity module that can be called, for example, from Python (as shown in
Fig. 20b). This technique uses a private container type in the Fortran module that exists only to contain the gravity
model class (since it uses an unlimited polymorphic class(*),pointer variable it can be used to contain any variable).
A C pointer to a container variable can be passed back to the C code. Access to the class methods is achieved using
this pointer as a subroutine argument. When the Fortran routine is called, the gravity model in the container is accessed
and its methods can be called. Interoperability with C also allows Fortran to make use of external libraries that have a C
interface (e.g., system calls or GUI toolkits). Current Copernicus development work includes rewriting the GUI in
Python using the PyQt toolkit, requiring heavy use of the interoperability of variables and procedures.

18

1 SUBROUTINE BISLOC (*,ID,ARR ,LEN ,KN,JLOC)
2 C-----
3 C BINARY SEARCH - LOCATE KEY WORD 'ID ' IN ARRAY '

ARR ', 1ST ENTRY
4 C IF FOUND , 'JLOC ' IS THE MATCHED POSITION IN 'ARR

'
5 C IF NOT FOUND , NON -STANDARD RETURN
6 C

I.E.
7 C ID = KEY WORD TO MATCH IN ARR. MATCH

AGAINST 1ST COL OF ARR
8 C ARR = ARRAY TO SEARCH.

ARR(ROW ,COL)
9 C LEN = LENGTH OF EACH ENTRY IN ARRAY.

LEN=ROW
10 C KN = NUMBER OF ENTRIES IN THE ARR.

KN =COL
11 C JLOC= POINTER RETURNED - FIRST WORD OF ENTRY.

MATCHED ROW
12 C-----
13 C
14 INTEGER ARR(1)
15 DATA ISWTCH / 16 /
16 C
17 JJ = LEN - 1
18 IF (KN .LT. ISWTCH) GO TO 120
19 KLO = 1
20 KHI = KN
21 10 K = (KLO+KHI +1)/2
22 20 J = K*LEN - JJ
23 IF (ID-ARR(J)) 30,90,40
24 30 KHI = K
25 GO TO 50
26 40 KLO = K
27 50 IF (KHI -KLO -1) 100,60,10
28 60 IF (K .EQ. KLO) GO TO 70
29 K = KLO
30 GO TO 80
31 70 K = KHI
32 80 KLO = KHI
33 GO TO 20
34 90 JLOC = J
35 RETURN
36 100 JLOC = KHI*LEN - JJ
37 J = KN *LEN - JJ
38 IF (ID .GT.ARR(J)) JLOC = JLOC + LEN
39 110 RETURN 1
40 C
41 C SEQUENTIAL SEARCH MORE EFFICIENT
42 C
43 120 KHI = KN*LEN - JJ
44 DO 130 J = 1,KHI ,LEN
45 IF (ARR(J)-ID) 130 ,90 ,140
46 130 CONTINUE
47 JLOC = KHI + LEN
48 GO TO 110
49 140 JLOC = J
50 GO TO 110
51 END

(a) Fortran 66 Binary Search Routine from NASTRAN.

1 pure function bisloc(id,arr) result(jloc)
2
3 !! binary search of a sorted array.
4
5 implicit none
6
7 integer ,intent(in) :: id
8 !! key word to match in `arr `
9 integer ,dimension (:),intent(in) :: arr

10 !! array to search (it is
11 !! assumed to be sorted)
12 integer :: jloc
13 !! the first matched index in 'arr '
14 !! (if not found , 0 is returned)
15
16 integer :: j,k,khi ,klo ,n
17 integer ,parameter :: iswtch = 16
18
19 n = size(arr)
20 jloc = 0
21 if (n<iswtch) then
22 ! sequential search more efficient
23 do j = 1 , n
24 if (arr(j)==id) then
25 jloc = j
26 return
27 else if (arr(j)>id) then
28 return ! error
29 end if
30 end do
31 else
32 klo = 1
33 khi = n
34 k = (klo+khi+1)/2
35 do
36 j = k
37 if (id<arr(j)) then
38 khi = k
39 else if (id==arr(j)) then
40 jloc = j
41 return
42 else
43 klo = k
44 end if
45 if (khi -klo <1) then
46 return ! error
47 else if (khi -klo==1) then
48 if (k==klo) then
49 k = khi
50 else
51 k = klo
52 end if
53 klo = khi
54 else
55 k = (klo+khi+1)/2
56 end if
57 end do
58 end if
59
60 end function bisloc

(b) Modern Fortran Binary Search Routine.

Fig. 19 Example of Refactoring Legacy Code into Modern Fortran. The original unstructured code is very
hard to follow, while the modern version is very straightforward. GOTO statements and line numbers are
almost entirely unnecessary in modern Fortran.

19

1 module c_interface_module
2
3 use iso_c_binding
4 use geopotential_module
5 implicit none
6 private
7
8 type :: container
9 class (*),pointer :: model

10 end type container
11
12 contains
13
14 subroutine c_ptr_to_f_string(cp,fstr)
15 !! Convert a c_ptr to a string into a Fortran string
16 type(c_ptr),intent(in) :: cp
17 character(len =:),allocatable ,intent(out) :: fstr
18 integer :: ilen !! string length
19 ilen = strlen(cp) !! C library function
20 block
21 character(kind=c_char ,len=ilen +1),pointer :: s
22 call c_f_pointer(cp,s)
23 fstr = s(1: ilen) ! exclude the '\0' char
24 end block
25 end subroutine c_ptr_to_f_string
26
27 function initialize(gravfile ,n,m) &
28 result(cp) bind(c,name='initialize ')
29 !! Initialize the gravity model
30 type(c_ptr),intent(in),value :: gravfile
31 integer(c_int),intent(in),value :: n !! degree
32 integer(c_int),intent(in),value :: m !! order
33 type(c_ptr) :: cp
34 type(container),pointer :: grav_container
35 class(geopotential_model),pointer :: grav
36 logical :: status_ok
37 character(len =:),allocatable :: gravfile_f

38 allocate(grav_container)
39 allocate(geopotential_model_pines :: grav_container%

model)
40 select type (g => grav_container%model)
41 class is (geopotential_model_pines)
42 call c_ptr_to_f_string(gravfile ,gravfile_f)
43 call g%initialize(gravfile_f ,n,m,status_ok)
44 cp = c_loc(grav_container)
45 end select
46 end function initialize
47
48 subroutine destroy(cp) bind(c,name='destroy ')
49 !! Destroy the gravity model
50 type(c_ptr),intent(in),value :: cp
51 type(container),pointer :: grav_container
52 call c_f_pointer(cp,grav_container)
53 select type (g => grav_container%model)
54 class is (geopotential_model)
55 call g%destroy ()
56 end select
57 deallocate(grav_container)
58 end subroutine destroy
59
60 subroutine get_acc(cp,rvec ,acc) bind(c,name='get_acc ')
61 !! Compute the acceleration vector
62 type(c_ptr),intent(in),value :: cp
63 real(c_double),dimension (3),intent(in) :: rvec
64 real(c_double),dimension (3),intent(out) :: acc
65 type(container),pointer :: grav_container
66 call c_f_pointer(cp,grav_container)
67 select type (g => grav_container%model)
68 class is (geopotential_model)
69 call g%get_acc(rvec ,acc)
70 end select
71 end subroutine get_acc
72
73 end module c_interface_module

(a) Example of C Interoperability. The main procedures here are initialize(), get_acc(), and destroy(). These routines
are marked as interoperable with C using the bind attribute.

1 from ctypes import *
2
3 grav = CDLL('libgrav.so') # c_interface_module compiled as a shared library
4
5 initialize = grav.initialize # define all the functions and their arguments
6 initialize.argtypes = [c_char_p ,c_int ,c_int]
7 initialize.restype = POINTER(c_int)
8 get_acc = grav.get_acc
9 get_acc.argtypes = [POINTER(c_int),POINTER(c_double),POINTER(c_double)]

10 get_acc.restype = None
11 destroy = grav.destroy
12 destroy.argtypes = [POINTER(c_int)]
13 destroy.restype = None
14
15 VecType = c_double *3 # 3x1 vector
16 gravfile = c_char_p(b'GGM03C.GEO') # gravity coefficient file to load
17 n = c_int (8) # degree
18 m = c_int (8) # order
19 acc = VecType (0.0 ,0.0 ,0.0)
20 rvec = VecType (10000.0 , 10000.0 , 10000.0) # point to evaluate the gravity field
21
22 # now we can call the Fortran procedures:
23 cp = initialize(gravfile ,n,m)
24 get_acc(cp,rvec ,acc)
25 print(acc[0],acc[1],acc [2])
26 destroy(cp)

(b) Example of Calling the Module from Python. The Python ctypesmodule provides a mechanism for calling functions in
shared libraries. It is used here to wrap the object-oriented Fortran code in a Python interface.

Fig. 20 Example Use of Fortran Code in Python. The C-Interoperability feature of modern Fortran provides
a standardized way to interface with C (and thus other languages compatible with C such as Python).

20

1 subroutine constraint_violations(me,x,f,funcs_to_compute)
2
3 !! Compute the constraint violation vector for the mission.
4
5 implicit none
6
7 class(mission_type),intent(inout) :: me
8 real(wp),dimension (:),intent(in) :: x !! opt var vector for the mission [n]
9 real(wp),dimension (:),intent(out) :: f !! constraint violation vector for the mission [m]

10 integer ,dimension (:),intent(in),optional :: funcs_to_compute !! the indices of f to compute
11
12 integer :: i !! counter
13 integer ,dimension (:),allocatable :: isegs !! segments to be propagated
14
15 call me%put_x_in_segments(x) ! extract data from the opt var vector and populate the segments
16 call me%segs_to_propagate(funcs_to_compute ,isegs) ! get the list of segments that needs to be propagated
17 do i = 1, size(isegs) ! propagate the segments:
18 call me%segs(isegs(i))%propagate ()
19 end do
20 call me%get_problem_arrays(f=f) ! mission class procedure to compute the constraint violations
21
22 end subroutine constraint_violations

Fig. 21 NRHO Problem Function. The input to this function is the control vector (x) and (optionally) the
indices of the function vector that need to be computed. All variables and methods are contained within the
mission_type class, which includes the segment array (segs). All the necessary segments are propagated and
the constraint violations are then computed.

VI. Test Case: NRHO Solver
In addition to general trajectory optimization tools such as Copernicus, it is often advantageous to build stand-alone

tools that solve only one problem (or variants of a problem). In many cases, this allows a reduction in overhead that may
be present in a more comprehensive tool, which can be significant if the problem is to be solved numerous times. Using
the various open source libraries described here (as well as other algorithms from Copernicus), a stand-alone solver was
created for the computation of long-term ballistic Near Rectilinear Halo Orbits (NRHOs) in the Earth-Moon system,
using the “forward/backward shooting” algorithm described in Reference [61].

In this solver (which is planned to be released publicly at a later date), the mission segments are extensions of the
abstract DDEABM integration class. The segment class contains all the data necessary to propagate the segment by the
integration method (t0, t f , x0, the force model, etc.). The Fortran Astrodynamics Toolkit is used to define the force
model, which is an 8 × 8 GRAIL model [62] for the Moon, with the Earth and Sun included as pointmass third bodies.
The equations of motion for this problem are shown in Fig. 15. The object-oriented JPLEPH ephemeris is used (each
segment contains an instance of the force model and ephemeris). Gradients are computed by finite differences using
the NumDiff library (graph coloring is used to efficiently compute the Jacobian with as few function evaluations as
possible). Finally, a basic differential corrector (see Fig. 16) is used to ensure state continuity (the CR3BP solution is
used as an initial guess for the ephemeris model).

A simplified input file for this tool is shown in Fig. 2a, which includes the orbit size (defined by the initial lunar
periapsis radius), initial epoch, and number of revolutions to compute. Fig. 21 shows the constraint violation function
passed to the solver. Note that the mission segments are defined as an array of segs in the main mission_type
class, and are propagated serially in this example (lines 17–19). Using task-based parallelism to propagate mission
segments whose data dependencies have already been satisfied has not yet been implemented, but provides an appealing
opportunity for accelerating the convergence time for missions with many segments—even when complex segment
dependencies are present. Section VII discusses two possible implementation strategies. An example output of the
NRHO solver is shown in Fig. 22.

VII. Proposed Task-Based Parallelization of Mission Segments
In Copernicus, or in the NRHO test case described in Section VI, an opportunity for coarse grained parallelism

exists in the mission segment propagation. For missions with many segments, some may be computed concurrently
rather than looping through the topologically sorted segments sequentially as discussed above. For missions with many
segments this may provide a large speedup in the time to solution, if the dependencies provide sufficient opportunity for
concurrent computation.

21

(a) NRHO Solution (Moon-Centered J2000
Frame). This is 20 revolutions of a ballistically
propagated L2 4,500 km rp (southern family)
NRHO.

0 20 40 60 80 100 120
0

20

40

60

80

100

(b) Jacobian Sparsity Pattern Structure. The squares rep-
resent the locations of the non-zero elements of the Jacobian
matrix for the first 4 revs of the problem.

Fig. 22 NRHO Example Solution. For the 20 rev case, there are 160 trajectory segments, 567 control variables,
and 480 equality constraints. The Jacobian is quite sparse, and so the problem is amenable to sparsity pattern
partitioning and parallelization. When evaluating specific elements of the function vector during computation
of the Jacobian, only the segments that those functions depend on need to be propagated (see Fig. 21).

We propose two possible strategies to implement this proposed task-based parallelism using CAF. Both approaches
involve images taking responsibility for one or more propagation segments, as depicted in Fig. 7. The first strategy is the
easiest and fastest to implement, but likely will not scale well to very large numbers of segments and requires that the
total number of segments be known when the program is launched. This approach can be implemented with Fortran
2008 features that are currently supported by the Intel, GCC, and Cray Fortran compilers. The second proposed strategy
is the most flexible, robust and generic, however it relies on features from TS 18508 [63] which will become part of the
Fortran 2018 standard that are less widely supported at the present time.

The data dependencies between segments to propagate can be represented by a DAG, including the one depicted in
Fig. 7. Currently, topological sorting is used to serialize the DAG; however, it is evident from Fig. 7 certain segments
may not have any dependencies at all, or multiple other segments may have one or more common dependencies. As
soon as all of the data dependencies of a segment are met, nothing is preventing it from being propagated. In the NRHO
problem function source listing shown in Fig. 21, isegs represents the topologically sorted order required to propagate
the dependencies, and the do loop on lines 17–19 is executed serially. Both proposed task-based parallelism strategies
would distribute the work in this loop among multiple CAF images, allowing segments with satisfied data dependencies
to be propagated concurrently.

The first, and most naive, of these implementation strategies is to simply allocate the number of images equal to
the number of segments when the program is launched. Outside of the work done by the constraint_violations()
function the rest of the program can be wrapped in if (this_image() == 1) statements. This prevents IO from being
duplicated by each image and prevents interactions with GUI front ends, etc. from being corrupted. Image one can then
broadcast the required initialization and setup data to all the other images using the intrinsic co_broadcast() function.
Before each image starts their propagation, they must examine the segment propagation DAG and compute the parent
nodes representing segments on which they depend, if any, and the child nodes that cannot begin work until the current
node finishes propagating its segment. Once the broadcast of initial data from the master image is complete, and each
node has computed its parents and children in the data dependency graph, segment propagation may begin. To start,
each image issues a sync images() call if any data dependencies exist, with the list of participating images equal to
the list of parent segments on which the current segment depends. After the sync images statement, the segment is
propagated on the image, assuming any required data was placed into the image’s memory with a “put.” Once the image
has finished its segment propagation computations, it sends the data required by child dependents to the list of images

22

corresponding to dependent segments with a “put.” After sending the data, a final symc images() is called with the list
of dependent image segments.

The benefits of this design are the simplicity of the approach, and the natural expression of data dependencies using
more commonly available CAF features. Even if the number of mission segments are more numerous than PEs available
on a system, the negative performance impact should be limited if the two following conditions are met: First, the
dependencies are structured in such a way that as many—or only a few more—segments may be concurrently propagated
as there are available PEs. Second, that there is enough available space in memory to accommodate each instance of a
coarray variable associated with an image. So long as these two conditions are met, even on grossly oversubscribed
systems, each physical PE will only be actively performing computations for one or fewer segments most of the time.
The drawbacks of this approach are that the program must be launched knowing the number of segments in advance
so that the correct number of images are spawned, and, for large problems where there are many more segments than
available PEs, unnecessary replication of coarray variables—one per image—may exhaust the available system memory.

The second, more sophisticated approach is to use a traditional master/worker paradigm. This is not completely
dissimilar to the first approach but it is more complicated to implement and can most naturally be expressed using events,
a feature introduced in TS 18508 and included in the forthcoming release of the Fortran 2018 standard. Rather than
mapping each mission segment to a unique CAF image, the first image is designated the “master” and controls a pool of
the remaining “worker” images. As in the naive example, image one is responsible for all of the IO, setup, initialization
and cleanup. If the Fortran 2018 teams feature is available, a master team containing only image one and a worker team
with the remaining images can be created. This is mostly a syntactic convenience for the current case and the same
behavior may be easily implemented using the technique outlined in the previous approach by wrapping the appropriate
code sections in if statements to detect if the current image is the master image or a worker image. The master image is
then responsible for sending individual mission segments to the worker images, and ensuring that those workers have
the data required from previous segments and execute in the correct order. Events are used to ensure proper execution
segment ordering between the master and worker images and to communicate when a segment is ready to be propagated
and when it is finished being propagated.

This approach is much more generic and robust, since any number of images may be specified when the program
starts, and a problem of any size will be able to be loaded and run after the program has begun execution. Furthermore,
this approach allows incremental optimizations to be made to the scheduling algorithm responsible for analyzing
the mission segment DAG and dispatching work to the workers. For example, the simplest implementation could
naively loop through ready mission segments on the master image, dispatching them to the next worker that finishes
its previously assigned segment. Once a basic implementation has been implemented, further optimizations can be
made. For example, linear sections of segments with only one parent and one child can all be sent at once to the same
worker image. Once the worker image has received the data associated with the first segment to be propagated it may
begin computations, even if data associated with subsequent segments is still in transit, and intermediate coordination
between the master and worker can be eliminated. If some measure of the cost of each segment can be estimated, a
more sophisticated graph partitioning algorithm or library, such as METIS¶¶¶ [64], could be used to dispatch multiple
interdependent subgraph clusters to each worker image.

VIII. Conclusion
Various algorithms and their implementation in modern Fortran are shown. The modern programming concepts

(such as dynamic data structures, polymorphism, and parallelization) available in Fortran can be very useful in the
creation of spacecraft trajectory design and optimization tools. It is also shown how refactoring can breathe new life into
legacy Fortran 77 code without a total rewrite in another programming language. Copernicus, originally designed in the
early 2000s, has made great use of the new capabilities of modern Fortran as they have become available. A stand-alone
NRHO solver has also been developed using many of the basic algorithms described in this paper, demonstrating how
the codes can be used in a very flexible and modular way. Finally a task-based parallelization method using Coarray
Fortran (CAF) is proposed that could be used to speed up convergence for complex missions.

Funding Sources
This work was partially funded by NASA JSC under contract NNJ13HA01C.

¶¶¶METIS – Serial Graph Partitioning and Fill-reducing Matrix Ordering. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

23

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Acknowledgments
The authors wish to thank the members of the small but dedicated Fortran internet-based user community (especially

the comp.lang.fortran user group, the Intel Fortran forum, GitHub and Gitter) who have been such a great resource for
learning the language.

References
[1] Backus, J., “The History of FORTRAN I, II and III,” Annals of the History of Computing, Vol. 1, No. 1, 1979, pp. 21–37.

[2] Metcalf, M., Reid, J., and Cohen, M., Modern Fortran Explained, 4th ed., Oxford University Press, Inc., New York, NY, USA,
2011.

[3] Metcalf, M., “The Seven Ages of Fortran,” Journal of Computer Science & Technology, Vol. 11, No. 1, 2011.

[4] Reid, J., “The New Features of Fortran 2003,” SIGPLAN Fortran Forum, Vol. 26, No. 1, 2007, pp. 10–33.

[5] Reid, J., “The New Features of Fortran 2008,” SIGPLAN Fortran Forum, Vol. 33, No. 2, 2014, pp. 21–37.

[6] Reid, J., “The New Features of Fortran 2015,” SIGPLAN Fortran Forum, Vol. 36, No. 2, 2017, pp. 3–28.

[7] Rouson, D., Xia, J., and Xu, X., Scientific Software Design: The Object-Oriented Way, 1st ed., Cambridge University Press,
New York, NY, USA, 2011.

[8] Markus, A.,Modern Fortran in Practice, Cambridge University Press, New York, NY, USA, 2012.

[9] Hanson, R. J., and Hopkins, T., Numerical Computing With Modern Fortran, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2013.

[10] Haveraaen, M., Morris, K., Rouson, D., Radhakrishnan, H., and Carson, C., “High-Performance Design Patterns for Modern
Fortran,” Sci. Program., Vol. 2015, 2015, pp. 3:3–3:3.

[11] Battin, R., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, American Institute of
Aeronautics & Astronautics, 1999.

[12] Ocampo, C., “An Architecture for a Generalized Trajectory Design and Optimization System,” Proceedings of the Conference:
Libration Point Orbits and Applications, edited by G. Gómez, M. W. Lo, and J. J. Masdemont, World Scientific Publishing
Company, 2003, pp. 529–572. Aiguablava, Spain.

[13] Wahbah, M. M., Berning, M. J., and Choy, T. S., “Simulation of Airplane and Rocket Trajectories,” NASA Tech Brief
MSC-20933, Jul. 1987.

[14] Riehl, J. P., Sjauw, W. K., Falck, R. D., and Paris, S. W., “Trajectory Optimization: OTIS 4,” NASA Tech Brief LEW-18319-1,
Apr. 2010.

[15] Sims, J., Finlayson, P., Rinderle, E., Vavrina, M., and Kowalkowski, T., “Implementation of a Low-Thrust Trajectory Optimization
Algorithm for Preliminary Design,” AIAA/AAS Astrodynamics Specialist Conference, Aug. 2006. AIAA 2006-6746.

[16] Whiffen, G. J., “Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust
Trajectory Design,” AIAA/AAS Astrodynamics Specialist Conference, Aug. 2006. AIAA 2006-6741.

[17] Lugo, R. A., Shidner, J. D., Powell, R. W., Marsh, S. M., Hoffman, J. A., Litton, D. K., and Schmitt, T. L., “Launch Vehicle
Ascent Trajectory Simulation Using the Program to Optimize Simulated Trajectories II (POST2),” AAS/AIAA Space Flight
Mechanics Meeting, Feb. 2017. AAS 17-274.

[18] Evans, S., Taber, W., Drain, T., Smith, J., Wu, H.-C., Guevara, M., Sunseri, R., and Evans, J., “MONTE: The Next Generation
of Mission Design & Navigation Software,” The 6th International Conference on Astrodynamics Tools and Techniques (ICATT),
2016.

[19] Hatfield, J. N., “CATO (Computer Algorithm for Trajectory Optimization): An Implementation of Fortran 95 Object-based
Programming,” SIGPLAN Fortran Forum, Vol. 22, No. 1, 2003, pp. 2–7.

[20] Williams, J., Senent, J. S., and Lee., D. E., “Recent Improvements to the Copernicus Trajectory Design and Optimization
System,” Advances in the Astronautical Sciences, Vol. 143, 2012. AAS 12-236.

24

[21] Lewis, H. R., and Denenberg, L., Data Structures and their Algorithms, Harper Collins, 1991.

[22] Blevins, J. R., “A Generic Linked List Implementation in Fortran 95,” SIGPLAN Fortran Forum, Vol. 28, No. 3, 2009, pp. 2–7.

[23] Williams, J., “A NewArchitecture for Extending the Capabilities of the Copernicus Trajectory Optimization Program,” Advances
in the Astronautical Sciences: Astrodynamics 2015, Vol. 156, 2016. AAS 15-606.

[24] Dawn, T. F., Gutkowski, J. P., Batcha, A. L., Williams, J., and Pedrotty, S. M., “Trajectory Design Considerations for Exploration
Mission 1,” AIAA/AAS Space Flight Mechanics Meeting, Jan. 2017.

[25] Pines, S., “Uniform Representation of the Gravitational Potential and its Derivatives,” AIAA Journal, Vol. 11, 1973, pp.
1508–1511.

[26] Eckman, R. A., Brown, A. J., and Adamo, D. R., “Normalization and Implementation of Three Gravitational Acceleration
Models,” Tech. Rep. TP-2016-218604, NASA, Jun. 2016.

[27] Spencer, J., “Pines’ Nonsingular Gravitational Potential Derivation, Description, and Implementation,” Tech. Rep. NASA-CR-
147478, NASA, Feb. 1976.

[28] Werner, R. A., and Scheeres, D. J., “Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon
Gravitation Representations of Asteroid 4769 Castalia,” Celestial Mechanics and Dynamical Astronomy, Vol. 65, No. 3, 1996,
pp. 313–344.

[29] Williams, J., “POLYGRAV: Polyhedral Gravity Model Fortran Code (v1.0),” Tech. Rep. JETS-JE23-15-AFGNC-DOC-0034,
JSC Engineering, Technology and Science (JETS) Contract, Apr. 2015.

[30] Radhakrishnan, K., and Hindmarsh, A. C., “Description and Use of LSODE, the Livermore Solver for Ordinary Differential
Equations,” Report UCRL-ID-113855, Lawrence Livermore National Laboratory, 1993.

[31] Brown, P. N., Byrne, G. D., and Hindmarsh, A. C., “VODE: A Variable-Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.,
Vol. 10, No. 5, 1989, pp. 1038–1051.

[32] Shampine, L. F., and Watts, H. A., “DEPAC – Design of a User Oriented Package of ODE Solvers,” Tech. Rep. SAND-79-2374,
Sandia National Labs, Sep. 1980.

[33] Brent, R. P., “An Algorithm with Guaranteed Convergence for Finding a Zero of a Function,” The Computer Journal, Vol. 14,
No. 4, 1971, pp. 422–425.

[34] “The SPICE Toolkit,” https://naif.jpl.nasa.gov/naif/toolkit.html, Apr. 2017.

[35] Arora, N., and Russell, R. P., “A Fast, Accurate, and Smooth Planetary Ephemeris Retrieval System,” Celestial Mechanics and
Dynamical Astronomy, Vol. 108, No. 2, 2010, pp. 107–124.

[36] JPL, “Instructions for Ephemeris File Access Through Fortran Programs,” ftp://ssd.jpl.nasa.gov/pub/eph/planets/
fortran/userguide.txt, Mar. 2013.

[37] “HSL: A Collection of Fortran Codes for Large Scale Scientific Computation,” http://www.hsl.rl.ac.uk/, Feb. 2011.

[38] Kraft, D., “Algorithm 733: TOMP–Fortran Modules for Optimal Control Calculations,” ACM Trans. Math. Softw., Vol. 20,
No. 3, 1994, pp. 262–281.

[39] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm For Large-Scale Constrained Optimization,” SIAM
Journal on Optimization, Vol. 12, 1997, pp. 979–1006.

[40] Wächter, A., and Biegler, L. T., “On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale
Nonlinear Programming,” Mathematical Programming, Vol. 106, No. 1, 2006, pp. 25–57.

[41] Parker, J., and Anderson, R., Low-Energy Lunar Trajectory Design, JPL Deep-Space Communications and Navigation Series,
Wiley, 2014.

[42] Moré, J. J., Garbow, B. S., and Hillstrom, K. E., “User Guide for MINPACK-1,” Tech. Rep. ANL-80-74, Argonne National
Laboratory, Aug. 1980.

[43] Engeln-Müllges, G., and Uhlig, F., Numerical Algorithms with Fortran, Springer-Verlag, 1996.

25

https://naif.jpl.nasa.gov/naif/toolkit.html
ftp://ssd.jpl.nasa.gov/pub/eph/planets/fortran/userguide.txt
ftp://ssd.jpl.nasa.gov/pub/eph/planets/fortran/userguide.txt
http://www.hsl.rl.ac.uk/

[44] Stepleman, R. S., and Winarsky, N. D., “Adaptive Numerical Differentiation,” Mathematics of Computation, Vol. 33, 1976, pp.
1257–1264.

[45] Oliver, J., “An Algorithm for Numerical Differentiation of a Function of One Real Variable,” Journal of Computational and
Applied Mathematics, Vol. 6, No. 2, 1980, pp. 145 – 160.

[46] Coleman, T. F., Garbow, B. S., and Moré, J. J., “Algorithm 618: FORTRAN Subroutines for Estimating Sparse Jacobian
Matrices,” ACM Trans. Math. Softw., Vol. 10, No. 3, 1984, pp. 346–347.

[47] Hadjidoukas, P., Angelikopoulos, P., Voglis, C., Papageorgiou, D., and Lagaris, I., “NDL-v2.0: A New Version of the Numerical
Differentiation Library for Parallel Architectures,” Computer Physics Communications, Vol. 185, No. 7, 2014, pp. 2217 – 2219.
URL http://www.sciencedirect.com/science/article/pii/S0010465514001258.

[48] Martins, J. R. R. A., Kroo, I. M., and Alonso, J. J., “An Automated Method for Sensitivity Analysis Using Complex Variables,”
Proceedings of the 38th AIAA Aerospace Sciences Meeting, Reno, NV, 2000. AIAA 2000-0689.

[49] Yu, W., and Blair, M., “DNAD, a Simple Tool for Automatic Differentiation of Fortran Codes Using Dual Numbers,” Computer
Physics Communications, Vol. 184, No. 5, 2013, pp. 1446 – 1452.

[50] Bailey, D. H., “A Thread-Safe Arbitrary Precision Computation Package (Full Documentation),” Tech. rep., Mar. 2017.
http://www.davidhbailey.com/dhbsoftware/.

[51] Numrich, R. W., and Reid, J., “Co-array Fortran for Parallel Programming,” SIGPLAN Fortran Forum, Vol. 17, No. 2, 1998, pp.
1–31.

[52] Shterenlikht, A., Margetts, L., Cebamanos, L., and Henty, D., “Fortran 2008 Coarrays,” SIGPLAN Fortran Forum, Vol. 34,
No. 1, 2015, pp. 10–30.

[53] Shan, H., Wright, N. J., Shalf, J., Yelick, K., Wagner, M., and Wichmann, N., “A Preliminary Evaluation of the Hardware
Acceleration of the CrayGemini Interconnect for PGASLanguages and ComparisonwithMPI,”ACMSIGMETRICS Performance
Evaluation Review, Vol. 40, No. 2, 2012, pp. 92–98.

[54] Chamberlain, B. L., Callahan, D., and Zima, H. P., “Parallel Programmability and the Chapel Language,” The International
Journal of High Performance Computing Applications, Vol. 21, No. 3, 2007, pp. 291–312.

[55] Nakao, M., Lee, J., Boku, T., and Sato, M., “Productivity and Performance of Global-View Programming with XcalableMP
PGAS Language,” Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(ccgrid 2012), IEEE Computer Society, 2012, pp. 402–409.

[56] Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., and Rouson, D., “OpenCoarrays: Open-Source Transport
Layers Supporting Coarray Fortran Compilers,” Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models, ACM, 2014, p. 4.

[57] Rouson, D., Gutmann, E., Friesen, B., and Fanfarillo, A., “Performance Portability of an Intermediate-Complexity Atmospheric
Research Model in Coarray Fortran,” PGAS Applications Workshop (PAW), IEEE, 2016, pp. 25–32.

[58] Overbey, J., Xanthos, S., Johnson, R., and Foote, B., “Refactorings for Fortran and High-performance Computing,” Proceedings
of the Second International Workshop on Software Engineering for High Performance Computing System Applications, ACM,
New York, NY, USA, 2005, pp. 37–39.

[59] Radhakrishnan, H., Rouson, D. W. I., Morris, K., Shende, S., and Kassinos, S. C., “Using Coarrays to Parallelize Legacy
Fortran Applications: Strategy and Case Study,” Sci. Program., Vol. 2015, 2015, pp. 2:2–2:2.

[60] “NASTRAN User Guide,” Tech. Rep. NASA-CR-2504, NASA, Apr. 1975.

[61] Williams, J., Lee, D. E., Whitley, R. L., Bokelmann, K. A., Davis, D. C., and Berry, C. F., “Targeting Cislunar Near Rectilinear
Halo Orbits for Human Space Exploration,” AAS/AIAA Space Flight Mechanics Meeting, Feb. 2017. AAS 17-267.

[62] Lemoine, F. G., Goossens, S., Sabaka, T. J., Nicholas, J. B., Mazarico, E., Rowlands, D. D., Loomis, B. D., Chinn, D. S.,
Caprette, D. S., Neumann, G. A., Smith, D. E., and Zuber, M. T., “High-Degree Gravity Models from GRAIL Primary Mission
Data,” Journal of Geophysical Research: Planets, Vol. 118, No. 8, 2013, pp. 1676–1698.

[63] ISO, ISO/IEC TS 18508:2015: Information Technology – Additional Parallel Features in Fortran, International Organization
for Standardization, Geneva, Switzerland, 2015.

[64] Karypis, G., and Kumar, V., “Multilevel k-way Partitioning Scheme for Irregular Graphs,” Journal of Parallel and Distributed
Computing, Vol. 48, No. 1, 1998, pp. 96–129.

26

http://www.sciencedirect.com/science/article/pii/S0010465514001258
http://www.davidhbailey.com/dhbsoftware/

	Introduction
	Survey of Algorithms
	JSON
	Dynamic Structures & Linked Lists
	Copernicus Mission Attributes
	Topological Sorting
	Calculation Expression Parser
	Binary Syntax Trees
	The Parsing Algorithm
	Evaluation of Syntax Trees

	Gravity Models
	ODE IVP Solvers
	Ephemeris
	Optimizers & Nonlinear Equation Solvers
	Gradients

	Coarray Fortran
	Refactoring Legacy Code
	Interoperability with Other Programming Languages
	Test Case: NRHO Solver
	Proposed Task-Based Parallelization of Mission Segments
	Conclusion

